

Labstat

1g Disposable (Delta White)

Matrix: Infused Product

Sample: KN30501004-021 Harvest/Lot ID: 365

Batch#: 921A

Sample Size Received: 1 gram Retail Product Size: 1 gram

> Ordered: 04/26/23 Sampled: 04/26/23 Completed: 06/26/23

PASSED

Page 1 of 5

Certificate of Analysis

Jun 26, 2023 | Hometown Hero

9501-B Menchaca Rd #100 Austin, TX, 78748, US

PRODUCT IMAGE

SAFETY RESULTS

PASSED

PASSED

Residuals Solvents PASSED

PASSED

Water Activity

Moisture

NOT TESTED

PASSED

Potency

96.2933%

Total Cannabinoids 96.8411%

<0.01	< 0.01				CBN	D9-THC	D8-THC	D10-THC	CBC	THCA
		ND	< 0.01	ND	0.3902	ND	96.2933	0.1428	0.0148	ND
< 0.1	<0.1	ND	< 0.1	ND	3.902	ND	962.933	1.428	0.148	ND
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
		0.001 0.001 % %		0.001 0.001 0.001 0.001 % % % % Weight: E	0.001 0.001 0.001 0.001 % % % %	0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % % %	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % %	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % % %	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % % % % % % % % %	0.001 0.001

Analysis Method: SOP.T.30.031.TN & SOP.T.40.031.TN Expanded Measurement of Uncertainty: Flower Matrix d9-THC: ± 0.100, THCa: ± 0.124, TOTAL THC ± 0.112. These uncertainties represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor k=2 for a normal distribution.

Analytical Batch: KN003746POT

Instrument Used: E-SHI-008

Running on: N/A Reviewed On: 05/09/23 11:24:33 Batch Date: 05/08/23 08:15:38

Dilution : N/A

Reagent: 122922.10; 100422.02; 050423.R01; 050223.R01; 102722.04; 020323.09

Consumables: 301011028; 22/04/01; 220725; 239146; 947B9291.271; GD210005; 6121219; 600054; 220303059-D; IP250.100

Pipette: E-VWR-120

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproductibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

06/26/23

Labstat

1g Disposable (Delta White)

Matrix: Infused Product

Certificate of Analysis

PASSED

Hometown Hero

9501-B Menchaca Rd #100 Austin, TX, 78748, US Telephone: (512) 576-7210 Email: tcfmarketing024@gmail.com Sample: KN30501004-021 Harvest/Lot ID: 365

Batch# : 921A Sampled: 04/26/23 Ordered: 04/26/23

Sample Size Received: 1 gram Completed: 06/26/23 Expires: 06/26/24 Page 2 of 5

Pesticides

|--|

Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pestic
ABAMECTIN B1A	0.012		0.1	PASS	ND	PRALLI
ACEPHATE	0.008		0.1	PASS	ND	PROPIG
ACEQUINOCYL	0.038		0.1	PASS	ND	PROPO
ACETAMIPRID	0.009		0.1	PASS	ND	PYRETI
ALDICARB	0.009		0.1	PASS	ND	PYRID/
AZOXYSTROBIN	0.013		0.1	PASS	ND	
BIFENAZATE	0.028	ppm	0.1	PASS	ND	SPINET
BIFENTHRIN	0.047	ppm	0.1	PASS	ND	SPIRO
BOSCALID	0.007	ppm	0.1	PASS	ND	SPIROT
CARBARYL	0.015	ppm	0.5	PASS	ND	SPIRO
CARBOFURAN	0.008	ppm	0.1	PASS	ND	TEBUC
CHLORANTRANILIPROLE	0.012	ppm	3	PASS	ND	THIACI
CHLORMEQUAT CHLORIDE	0.008	ppm	1	PASS	ND	THIAM
CHLORPYRIFOS	0.014	ppm	0.1	PASS	ND	TOTAL
LOFENTEZINE	0.006	ppm	0.2	PASS	ND	
COUMAPHOS	0.009	ppm	0.1	PASS	ND	TRIFLO
DAMINOZIDE	0.006	ppm	0.1	PASS	ND	Analyz
DIAZANON	0.006		0.1	PASS	ND	2803
ICHLORVOS	0.014		0.1	PASS	ND	Analys
IMETHOATE	0.009		0.1	PASS	ND	Analyti
IMETHOMORPH	0.009		3	PASS	ND	Runnin
THOPROPHOS	0.007		0.1	PASS	ND	Dilutio
TOFENPROX	0.009		0.1	PASS	ND	Reager
TOXAZOLE	0.007		1.5	PASS	ND	Consu
ENHEXAMID	0.005		3	PASS	ND	947B92
ENOXYCARB	0.007		0.1	PASS	ND	Pipette
ENPYROXIMATE	0.006		2	PASS	ND	Testing
IPRONIL	0.008	11.11	0.1	PASS	ND	*Based
LONICAMID	0.014		2	PASS	ND	
LUDIOXONIL	0.011		3	PASS	ND	
IEXYTHIAZOX	0.009		2	PASS	ND	
MAZALIL	0.01	ppm	0.1	PASS	ND	
MIDACLOPRID	0.005		3	PASS	ND	
	0.003	1.1	1	PASS	ND	
RESOXIM-METHYL MALATHION	0.009	ppm	2	PASS	ND	
		1.1	3	PASS	ND	
/ETALAXYL	0.008		0.1	PASS	ND	
METHIOCARB	0.008					
/IETHOMYL	0.009		0.1	PASS	ND	
MEVINPHOS	0.001		0.1	PASS	ND	
IYCLOBUTANIL	0.006		3	PASS	ND	
IALED	0.023		0.5	PASS	ND	
XAMYL	0.009		0.5	PASS	ND	
ACLOBUTRAZOL	0.007		0.1	PASS	ND	
PERMETHRINS	0.008		1	PASS	ND	
PHOSMET	0.009		0.2	PASS	ND	
PIPERONYL BUTOXIDE	0.006	ppm	3	PASS	ND	

Pesticide		LOD	Units	Action Level	Pass/Fail	Result
PRALLETHRIN		0.008	ppm	0.4	PASS	ND
PROPICONAZOLE		0.007	ppm	1	PASS	ND
PROPOXUR		0.008	ppm	0.1	PASS	ND
PYRETHRINS		0.002	ppm	1	PASS	ND
PYRIDABEN		0.007	ppm	3	PASS	ND
SPINETORAM		0.004	ppm	3	PASS	ND
SPIROMESIFEN		0.009	ppm	3	PASS	ND
SPIROTETRAMAT		0.009	ppm	0.1	PASS	ND
SPIROXAMINE		0.006	ppm	0.1	PASS	ND
TEBUCONAZOLE		0.009	ppm	0.1	PASS	ND
THIACLOPRID		0.008	ppm	0.1	PASS	ND
THIAMETHOXAM		0.009	ppm	0.5	PASS	ND
TOTAL SPINOSAD		0.009	ppm	0.1	PASS	ND
TRIFLOXYSTROBIN		0.009	ppm	0.1	PASS	ND
Analyzed by:	Weight:	Extraction d			Extracted 2803	by:

sis Method : SOP.T.30.101.TN, SOP.T.40.101.TN tical Batch : KN003899PES ment Used : E-SHI-125

Batch Date: 06/23/23 09:40:55

Reviewed On: 06/26/23 11:01:32

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproductibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

06/26/23

Labstat

1g Disposable (Delta White)

N/A

Matrix : Infused Product

Certificate of Analysis

PASSED

Hometown Hero

9501-B Menchaca Rd #100 Austin, TX, 78748, US **Telephone:** (512) 576-7210 **Email:** tcfmarketing024@gmail.com Sample : KN30501004-021 Harvest/Lot ID: 365

Batch#: 921A Sampled: 04/26/23 Ordered: 04/26/23 Sample Size Received: 1 gram Completed: 06/26/23 Expires: 06/26/24 Page 3 of 5

Residual Solvents

PASSED

100 100 20 0.2 32 100	ppm ppm ppm ppm ppm ppm ppm	5000 5000 250 5 750 5000	PASS PASS PASS PASS PASS PASS PASS	ND ND ND ND ND
20 0.2 32 100 10	ppm ppm ppm ppm	250 5 750 5000	PASS PASS PASS	ND ND ND
0.2 32 100 10	ppm ppm ppm	5 750 5000	PASS PASS	ND ND
32 100 10	ppm ppm	750 5000	PASS	ND
100 10	ppm	5000		
10			PASS	ND
	ppm			
0.6		500	PASS	ND
0.0	ppm	8	PASS	ND
40	ppm	750	PASS	ND
25	ppm	500	PASS	ND
20	ppm	60	PASS	ND
2	ppm	125	PASS	ND
10	ppm	250	PASS	ND
8.3	ppm	400	PASS	ND
0.04	ppm	2	PASS	ND
0.03	ppm	1	PASS	ND
0.05	ppm	2	PASS	ND
53	ppm	5000	PASS	ND
0.5	ppm	25	PASS	ND
5	ppm	150	PASS	ND
15	ppm	150	PASS	ND
	25 20 2 10 8.3 0.04 0.03 0.05 53 0.5 5	0.6 ppm 40 ppm 25 ppm 20 ppm 2 ppm 10 ppm 8.3 ppm 0.04 ppm 0.03 ppm 0.05 ppm 53 ppm 0.5 ppm 5 ppm	0.6 ppm 8 40 ppm 750 25 ppm 500 20 ppm 60 2 ppm 125 10 ppm 250 8.3 ppm 400 0.04 ppm 2 0.03 ppm 1 0.05 ppm 2 53 ppm 5000 0.5 ppm 25 5 ppm 1500	0.6 ppm 8 PASS 40 ppm 750 PASS 25 ppm 500 PASS 20 ppm 60 PASS 2 ppm 125 PASS 10 ppm 250 PASS 8.3 ppm 400 PASS 0.04 ppm 2 PASS 0.03 ppm 1 PASS 0.05 ppm 2 PASS 53 ppm 5000 PASS 0.5 ppm 25 PASS 5 ppm 150 PASS

 Analyzed by:
 Weight:
 Extraction date:
 Extracted by:

 138, 3050
 0.02256g
 06/23/23 10:00:55
 138

Reviewed On: 06/26/23 12:15:13 **Batch Date:** 06/22/23 08:50:00

Analysis Method : SOP.T.40.041.TN Analytical Batch : KN003893SOL Instrument Used : E-SHI-106 Running on : N/A

Dilution: N/A Reagent: N/A

Consumables : R2017.167; G201-167

Pipette: N/A

 $Residual\ solvents\ analysis\ is\ performed\ using\ Gas\ Chromatography\ /\ Mass\ Spectrometry.\ *Based\ on\ FL\ action\ limits.$

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

06/26/23

Labstat

1g Disposable (Delta White)

Matrix: Infused Product

Certificate of Analysis

PASSED

Hometown Hero

9501-B Menchaca Rd #100 Austin, TX, 78748, US **Telephone:** (512) 576-7210 Email: tcfmarketing024@gmail.com

Sample: KN30501004-021 Harvest/Lot ID: 365

2805

Batch#:921A Sampled: 04/26/23 Ordered: 04/26/23

Sample Size Received: 1 gram Completed: 06/26/23 Expires: 06/26/24 Page 4 of 5

Microbial

Analyte		LOD	Units	Result	Pass / Fail	Action Level
ESCHERICHIA C	COLI SHIGELLA			Not Present	PASS	
SALMONELLA S	PECIFIC GENE			Not Present	PASS	
ASPERGILLUS F	LAVUS			Not Present	PASS	
ASPERGILLUS F	UMIGATUS			Not Present	PASS	
ASPERGILLUS N	NIGER			Not Present	PASS	
ASPERGILLUS 1	TERREUS			Not Present	PASS	
TOTAL YEAST A	AND MOLD	10	CFU	ND	PASS	100000
Analyzed by:	Weight:	Extractio	n date:		extracted b	v:

06/23/23 10:58:01

Analysis Method: SOP.T.40.056C, SOP.T.40.041 LOD is 1 CFU

1.0434g

Analytical Batch : KN003898MIC Reviewed On: 06/23/23 18:47:44 Instrument Used : E-HEW-069 Batch Date: 06/23/23 09:39:28 Running on: N/A

Dilution: N/A

2805

Reagent: 101822.09; 061623.01; 010923.06; 072722.06 Consumables: 22/04/01; 251773; 242429; 2DAX30621; P7528255; 41218-146C4-146C;

263989; 93825; 007109; n/a; 247040; 0150210

Pipette : E-THE-045; E-THE-046; E-THE-047; E-THE-048; E-THE-049; E-THE-050; E-THE-051; E-

THE-052; E-THE-053; E-THE-054; E-BIO-188

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. With an LOD of Lefu, if a pathogenic E Coli, Salmonella, A fumigatus, A flavus, A niger, or A terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

Analyzed by: 2805	Weight: 0.7051g	Extracted by: 2805	
Analysis Method	SOP.T.40.209.TN	l l	
Analytical Batch :	KN003724TYM	Reviewed On: 05,	/04/23 12:22:45
Instrument Used	: E-HEW-069	Batch Date: 05/0	1/23 13:32:39
Running on : \mathbb{N}/\mathbb{A}			
Dilution : N/A			
Reagent: 101822	09-010923-05		
		7100· n/a· 0150210	

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques. *Based on Analysis Method: SOP.T.30.082, SOP.T.40.082.TN FL action limits.

Analytical Batch: KN003895HEA Rev

Pipette: E-BIO-188

Μу	C	t	OV	i
 ·y	-			

ns

PASSED

Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN G2		0.0016	ppm	ND	PASS	0.02
AFLATOXIN G1		0.0012	ppm	ND	PASS	0.02
AFLATOXIN B2		0.0012	ppm	ND	PASS	0.02
AFLATOXIN B1		0.0012	ppm	ND	PASS	0.02
OCHRATOXIN A	A+	0.002	ppm	ND	PASS	0.02
TOTAL MYCOTO	OXINS	0.002	ppm	ND	PASS	0.02
Analyzed by:	Weight:	Extraction date:		E	xtracted b	oy:

1.0334g 06/23/23 09:44:39 Analysis Method: SOP.T.30.101.TN, SOP.T.40.101.TN

Reviewed On: 06/26/23 11:15:01 Analytical Batch: KN003901MYC Instrument Used: E-SHI-125 Batch Date: 06/23/23 09:48:14 Running on: N/A

Dilution: 0.01

Reagent: 010523.R11; 030723.R19; 052623.R03; 062023.R01; 122322.R26; 101722.04;

 $\begin{array}{l} 011723.04;\ 032221.01 \\ \textbf{Consumables}:\ 302110210;\ K130252J;\ 22/04/01;\ 220725;\ 21267B0;\ 251760;\ 201123-058; \end{array}$

211214634-D; 239146; 947B9291.271; GD220003; 0000257576; 1300.062 **Pipette**: E-VWR-116; E-VWR-117; E-VWR-118; E-VWR-119

Aflatoxins B1, B2, G1, G2, and Ochratoxins Mycrotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry. *Based on FL action limits.

Heavy Metals

PASSED

	/ / ^L	.OD	Units	Result	Pass / Fail	Action Level
	(0.02	ppm	ND	PASS	0.2
	(0.02	ppm	ND	PASS	0.2
		0.02	ppm	ND	PASS	0.2
	(0.02	ppm	ND	PASS	0.5
Weight: 0.2567g						by:
		(((((((((((((((((((0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm 0.02 ppm	0.02 ppm ND Weight: Extraction date: E	

Analytical Batch: KN003895HEA Instrument Used : E-AGI-084

Running on : N/A

Reviewed On: 06/23/23 14:18:27 Batch Date: 06/22/23 12:06:04

Reagent: 122922.10; 100422.02; 061323.R04; 050323.R02; 101722.05; 022023.01; 061523.R03; 051523.R39; 031423.R01; 051523.R12; 051723.R03; 051723.R04; 051723.R05; 031623.R02; 041923.R03; 051123.02

Consumables: 257747; 829C6-829B; 221200; A260422A Pipette: E-EPP-081; E-EPP-082

Heavy Metals analysis is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to single digit ppb concentrations. LOQ is 0.04 ppm for all metals. *Based on FL action

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. I.C=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017 Signature

06/26/23

Labstat

1g Disposable (Delta White)

N/A

Matrix: Infused Product

Certificate of Analysis

Reviewed On: 06/23/23 16:05:44

Batch Date: 06/20/23 09:38:43

PASSED

Hometown Hero

9501-B Menchaca Rd #100 Austin, TX, 78748, US **Telephone:** (512) 576-7210 **Email:** tcfmarketing024@gmail.com Sample : KN30501004-021 Harvest/Lot ID: 365

Batch#: 921A Sampled: 04/26/23 Ordered: 04/26/23

Sample Size Received: 1 gram Completed: 06/26/23 Expires: 06/26/24 Page 5 of 5

Filth/Foreign Material

PASSED

 Analyte
 LOD
 Units
 Result
 P/F
 Action Level

 Filth and Foreign Material
 1
 detect/g
 ND
 PASS
 3

 Analyzed by:
 Weight: 0.5735g
 Extraction date: 06/23/23 10:58:48
 Extracted by: 2805
 Extracted by:

Analysis Method: SOP.T.40.090 Analytical Batch: KN003889FIL Instrument Used: E-AMS-138

Running on : N/A
Dilution : N/A

Dilution: N/A Reagent: N/A Consumables: N/A Pipette: N/A

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2T13 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Labstat. This report is an Labstat certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Billion, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request.The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

06/26/23